\subsection{} On sait que le vecteur tangante unitaire est donné par la formule \\ $\vec{T}(t) = \frac{\vec{r}'(t)}{\|\vec{r}'(t)\|}$\\ Calculons $\vec{r}'(t)$ soit: $\vec{r}'(t) = ((t\sin{t})', (t\cos{t})', (t)')$\\ \begin{math} (t\sin{t})' = \sin{t} + t\cos{t}\\ (t\cos{t})' = \cos{t} - t\sin{t}\\ (t)' = 1\\ \vec{r}'(t) = (\sin{t} + t\cos{t}, \cos{t} - t\sin{t}, 1)\\ \end{math} Déterminons à présent $\|\vec{r}'(t)\|$ soit:\\ \begin{math} \|\vec{r}'(t)\| = \sqrt{(\sin{t}+t\cos{t})^2 + (\cos{t}-t\sin{t})^2 + 1^2}\\ \Leftrightarrow \|\vec{r}'(t)\|^2 = \sin^2{t}+\cos^2{t} + 2t\sin{t}\cos{t}-2t\sin{t}\cos{t} + t^2\cos^2{t}+t^2\sin^2{t}+1\\ \Leftrightarrow 1 + 0 + t^2\cos^2{t}+t^2\sin^2{t}+1\\ \Leftrightarrow 1 + 0 + t^2 + 1\\ \Leftrightarrow t^2 + 2 \end{math} On a donc:\\ \begin{math} \vec{T}(t) = \frac{(\sin{t}+t\cos{t}, \cos{t}-t\sin{t}, 1)}{\sqrt{t^2+2}}\\ \boxed{\Leftrightarrow \frac{1}{\sqrt{t^2+2}}(\sin{t}+t\cos{t}, \cos{t}-t\sin{t}, 1)} \end{math} \subsection{} On a \[ \vec{r'}(t_0) \text{ -> vectur directeur} \] \[\vec{r}(t_0) \text{ -> points de passage}\] Soit\\ \begin{math} \vec{r}(t_0) = (t_0\sin{t_0}, t_0\cos{t_0}, t_0) = (\frac{\pi}{2}, 0, \frac{\pi}{2})\\ \Leftrightarrow (\frac{\pi}{2}\sin{\frac{\pi}{2}}, 0, \frac{\pi}{2})\\ \Leftrightarrow (\frac{\pi}{2}, 0, \frac{\pi}{2}) \Rightarrow t_0 = \frac{\pi}{2}\\ \end{math} On remplace dans \(\vec{R}'(t)\) soit\\ \begin{math} \vec{r}'(t_0) = (\sin{\frac{\pi}{2}} + \frac{\pi}{2}\cos{\frac{\pi}{2}}, \cos{\frac{\pi}{2}}-\frac{\pi}{2}\sin{\frac{\pi}{2}}, 1)\\ \Leftrightarrow (1 + 0, -\frac{\pi}{2}, 1) \end{math} On a donc \[ \left\{ \begin{array}{l} x = \frac{\pi}{2} + r \\ y = 0 - \frac{\pi}{2} r \\ z = \frac{\pi}{2} + r \end{array} \right. \] \subsection{} On cherche \(\vec{r}(t)\) tel que \(\vec{r}'(t) = r(t)\) soit:\\ \begin{math} \vec{r}(t) = (t\sin{t_0}, t\cos{t_0}, t)\\ \int{\vec{r}'(t)} = (\int{t\sin{t}}, \int{t\cos{t}}, \int{t}) \end{math} \begin{itemize} \item \(\int{t\sin{t}dt} = -t\cos{t} - \sin{t} + C_1\) \item \(\int{t\cos{t}dt} = t\cos{t}-\cos{t} + C_2\) \item \(\int{tdt} = \frac{t^2}{2} + C_3\) \end{itemize} \begin{math} \int{\vec{r}(t) = (-t\cos{t}-\sin{t}, t\cos{t}-\cos{t}, \frac{t-2}{2}) + C \text{ (C = $C_1 + C_2 + C_3$)}} \end{math}