dm-4/exo4/exo4.tex
2025-03-25 18:31:33 -04:00

59 lines
1.1 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Soit la position dun point donnée par :
\[
\vec{r}(t) = (3t,\ t^3,\ 3t^2)
\]
On commence par calculer les dérivées :
\[
\vec{r}'(t) = (3,\ 3t^2,\ 6t), \quad
\vec{r}''(t) = (0,\ 6t,\ 6)
\]
\subsubsection*{Composante tangentielle \( a_T(t) \)}
\[
a_T(t) = \frac{\vec{r}'(t) \cdot \vec{r}''(t)}{\|\vec{r}'(t)\|}
\]
Calcul du produit scalaire :
\[
\vec{r}'(t) \cdot \vec{r}''(t) = 3 \cdot 0 + 3t^2 \cdot 6t + 6t \cdot 6 = 18t^3 + 36t
\]
Norme de \( \vec{r}'(t) \) :
\[
\|\vec{r}'(t)\| = \sqrt{3^2 + (3t^2)^2 + (6t)^2} = \sqrt{9 + 9t^4 + 36t^2}
\]
Donc :
\[
\boxed{a_T(t) = \frac{18t^3 + 36t}{\sqrt{9 + 9t^4 + 36t^2}}}
\]
\subsection*{2. Composante normale \( a_N(t) \)}
\[
a_N(t) = \frac{\|\vec{r}'(t) \wedge \vec{r}''(t)\|}{\|\vec{r}'(t)\|}
\]
Produit vectoriel :
\[
\vec{r}'(t) \wedge \vec{r}''(t) =
\begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\
3 & 3t^2 & 6t \\
0 & 6t & 6
\end{vmatrix}
= (-27t^2,\ -18,\ 18t)
\]
Norme du produit vectoriel :
\[
\|\vec{r}'(t) \wedge \vec{r}''(t)\| = \sqrt{(-27t^2)^2 + (-18)^2 + (18t)^2}
= \sqrt{729t^4 + 324 + 324t^2}
\]
Donc :
\[
\boxed{a_N(t) = \frac{\sqrt{729t^4 + 324 + 324t^2}}{\sqrt{9 + 9t^4 + 36t^2}}}
\]