## 1.1 - Product ```Ocaml # let rec product = function | [] -> 0 | x::t -> x * product t;; ``` ## 1.2 - Count ```Ocaml # let rec count x n = if x = [] then 0 else let e::t = x in if e = x then 1 + count t n else count t n;; (* Correction *) # let rec count x = function | [] -> 0 | e::t -> (if x = e then 1 else 0) + count x t;; val count = 'a -> 'a list -> int = ``` ## 1.3 - Search ```Ocaml # let rec search x n = if x = [] then 0 else let e::t = x in if e = x then true else search t n;; (* Correction *) # let search x = function | [] -> false | e::t -> x = e || search x t | _::t -> search x t ;; val search 'a -> 'a list -> bool = ``` ## 1.4 - $n^{th}$ ```Ocaml # let nth l n = if n <= 0 then invalid_arg "n <= 0" else let rec nthrec = function | ([],_) -> failwith "list too short" | (h::_,1)-> h | (_::t, n) -> nthrec(t, n-1) in ntrec(l, n);; val nth 'a list -> int -> 'a = ``` ## 1.5 - Maximum ```Ocaml # let rec max_value list = match list with | [] -> failwith "La liste est vide" | [x] -> x | hd :: tl -> let max_tail = max_value tl in if hd > max_tail then hd else max_tail;; (* v2 *) # let max_value list = if list = [] then failwith "la list est vide" else let rec mv = match list with | [x] -> x | hd :: tl -> let max_tail = max_value tl in if hd > max_tail then hd else max_tail in mv list;; (* Correction *) let maximum = function [] -> invalid_arg "Pas bô" | e::t -> (let rec max_rec m = function []-> m |e::t -> max_rec (if e>m then e else m) t in max_rec e t);; ``` ## 1.6 - Bonus second ```Ocaml # let rec second_smallest list = match list with | [] | [_] -> failwith "La liste ne contient pas au moins deux éléments distincts" | [x; y] -> if x < y then y else x | hd1 :: hd2 :: tl -> let min1, min2 = if hd1 < hd2 then (hd1, hd2) else (hd2, hd1) in let rec find_second_smallest rest = match rest with | [] -> min2 | hd :: tl -> if hd < min1 then find_second_smallest (min1 :: tl) else if hd < min2 && hd > min1 then find_second_smallest (hd :: min1 :: tl) else find_second_smallest (min2 :: tl) in find_second_smallest tl;; ``` ## Exercise 2.1 ```Ocaml let rec arith_list n a1 r = if n <= 0 then [] else a1 :: arithmetic_list (n - 1) (a1 + r) r;; (*Other solution*) # let arith_list n a1 r = if n <= 0 then invalid_arg "invalid rank n" else let rec f ai = function | 0 -> [] | i -> (a1+(n-i)+r)::f(ai+r) (i-1) in f ai n;; ``` ## Exercise 2.2 ```Ocaml let concatenate_lists lst1 lst2 = lst1 @ lst2;; ``` ## Exercise 3.1 ```Ocaml let rec growing = function | [] | [_] -> true | x :: y :: rest -> if x <= y then growing (y :: rest) else false;; ``` ## Exercise 3.2 ```ocaml let rec delete x = function | [] -> [] | e::i -> if x == e then i else e::delete x i ``` ## Exercise 3.3 ```Ocaml