feat: Finish DM

This commit is contained in:
2025-03-25 18:31:33 -04:00
parent 80fd7717fd
commit e04beb86ba
6 changed files with 462 additions and 0 deletions

59
exo4/exo4.tex Normal file
View File

@ -0,0 +1,59 @@
Soit la position dun point donnée par :
\[
\vec{r}(t) = (3t,\ t^3,\ 3t^2)
\]
On commence par calculer les dérivées :
\[
\vec{r}'(t) = (3,\ 3t^2,\ 6t), \quad
\vec{r}''(t) = (0,\ 6t,\ 6)
\]
\subsubsection*{Composante tangentielle \( a_T(t) \)}
\[
a_T(t) = \frac{\vec{r}'(t) \cdot \vec{r}''(t)}{\|\vec{r}'(t)\|}
\]
Calcul du produit scalaire :
\[
\vec{r}'(t) \cdot \vec{r}''(t) = 3 \cdot 0 + 3t^2 \cdot 6t + 6t \cdot 6 = 18t^3 + 36t
\]
Norme de \( \vec{r}'(t) \) :
\[
\|\vec{r}'(t)\| = \sqrt{3^2 + (3t^2)^2 + (6t)^2} = \sqrt{9 + 9t^4 + 36t^2}
\]
Donc :
\[
\boxed{a_T(t) = \frac{18t^3 + 36t}{\sqrt{9 + 9t^4 + 36t^2}}}
\]
\subsection*{2. Composante normale \( a_N(t) \)}
\[
a_N(t) = \frac{\|\vec{r}'(t) \wedge \vec{r}''(t)\|}{\|\vec{r}'(t)\|}
\]
Produit vectoriel :
\[
\vec{r}'(t) \wedge \vec{r}''(t) =
\begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\
3 & 3t^2 & 6t \\
0 & 6t & 6
\end{vmatrix}
= (-27t^2,\ -18,\ 18t)
\]
Norme du produit vectoriel :
\[
\|\vec{r}'(t) \wedge \vec{r}''(t)\| = \sqrt{(-27t^2)^2 + (-18)^2 + (18t)^2}
= \sqrt{729t^4 + 324 + 324t^2}
\]
Donc :
\[
\boxed{a_N(t) = \frac{\sqrt{729t^4 + 324 + 324t^2}}{\sqrt{9 + 9t^4 + 36t^2}}}
\]