epicours/Algo/Courses/Chapter 6 - Lists (Exercises).md

173 lines
3.3 KiB
Markdown

## 1.1 - Product
```Ocaml
# let rec product = function
| [] -> 0
| x::t -> x * product t;;
```
## 1.2 - Count
```Ocaml
# let rec count x n =
if x = [] then
0
else
let e::t = x in
if e = x then
1 + count t n
else
count t n;;
(* Correction *)
# let rec count x = function
| [] -> 0
| e::t -> (if x = e then 1 else 0) + count x t;;
val count = 'a -> 'a list -> int = <fun>
```
## 1.3 - Search
```Ocaml
# let rec search x n =
if x = [] then
0
else
let e::t = x in
if e = x then
true
else
search t n;;
(* Correction *)
# let search x = function
| [] -> false
| e::t -> x = e || search x t
| _::t -> search x t ;;
val search 'a -> 'a list -> bool = <fun>
```
## 1.4 - $n^{th}$
```Ocaml
# let nth l n =
if n <= 0 then
invalid_arg "n <= 0"
else
let rec nthrec = function
| ([],_) -> failwith "list too short"
| (h::_,1)-> h
| (_::t, n) -> nthrec(t, n-1)
in
ntrec(l, n);;
val nth 'a list -> int -> 'a = <fun>
```
## 1.5 - Maximum
```Ocaml
# let rec max_value list = match list with
| [] -> failwith "La liste est vide"
| [x] -> x
| hd :: tl ->
let max_tail = max_value tl in
if hd > max_tail then hd else max_tail;;
(* v2 *)
# let max_value list =
if list = [] then
failwith "la list est vide"
else
let rec mv = match list with
| [x] -> x
| hd :: tl ->
let max_tail = max_value tl in
if hd > max_tail then hd else max_tail
in mv list;;
(* Correction *)
let maximum = function
[] -> invalid_arg "Pas bô"
| e::t ->
(let rec max_rec m = function
[]-> m
|e::t -> max_rec (if e>m then e else m) t in max_rec e t);;
```
## 1.6 - Bonus second
```Ocaml
# let rec second_smallest list =
match list with
| [] | [_] -> failwith "La liste ne contient pas au moins deux éléments distincts"
| [x; y] -> if x < y then y else x
| hd1 :: hd2 :: tl ->
let min1, min2 =
if hd1 < hd2 then (hd1, hd2) else (hd2, hd1)
in
let rec find_second_smallest rest =
match rest with
| [] -> min2
| hd :: tl ->
if hd < min1 then find_second_smallest (min1 :: tl)
else if hd < min2 && hd > min1 then find_second_smallest (hd :: min1 :: tl)
else find_second_smallest (min2 :: tl)
in
find_second_smallest tl;;
```
## Exercise 2.1
```Ocaml
let rec arith_list n a1 r =
if n <= 0 then []
else a1 :: arithmetic_list (n - 1) (a1 + r) r;;
(*Other solution*)
# let arith_list n a1 r =
if n <= 0 then
invalid_arg "invalid rank n"
else
let rec f ai = function
| 0 -> []
| i -> (a1+(n-i)+r)::f(ai+r) (i-1)
in f ai n;;
```
## Exercise 2.2
```Ocaml
let concatenate_lists lst1 lst2 =
lst1 @ lst2;;
```
## Exercise 3.1
```Ocaml
let rec growing = function
| [] | [_] -> true
| x :: y :: rest -> if x <= y then growing (y :: rest) else false;;
let growing = function
|[] -> true
|l -> let rec g = function
|[e]-> true
| e1::e2::t -> if e1 > e2 then false else g(e2::t)
in g l;;
```
## Exercise 3.2
```ocaml
let rec delete x = function
| [] -> []
| e::i ->
if x == e then i
else
e::delete x i
```
## Exercise 3.3
```Ocaml
# let rec length l =
if l = [] then 0
else
let e::t = l in
1 +. length t;;
#let rec insert x i list =
if x < 0 then
invalid_arg "negative rank"
else if i > length list then
failwith "Out of bound"
else